skip to main content


Search for: All records

Creators/Authors contains: "Kaess, Felix"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Process chemical potential control and dislocation reduction were implemented to control oxygen concentration in N-polar GaN layers grown on sapphire substrates via metal organic chemical vapor deposition (MOCVD). As process supersaturation was changed from ∼30 to 3400, the formation energy of the oxygen point defect increased, which resulted in a 25-fold decrease in oxygen incorporation. Reducing dislocations by approximately a factor of 4 (to ∼10 9 cm −3 ) allowed for further reduction of oxygen incorporation to the low-10 17 cm −3 range. Smooth N-polar GaN layers with low oxygen content were achieved by a two-step process, whereas first a 1 µ m thick smooth N-polar layer with high oxygen concentration was grown, followed by low oxygen concentration layer grown at high supersaturation. 
    more » « less